3 (Sem-5/CBCS) MAT HC 1 (N/O)

2022

MATHEMATICS

(Honours)

Paper: MAT-HC-5016

(For New Syllabus)

(Complex Analysis)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer any seven questions from the following:
 - (a) Describe the domain of definition of the function $f(z) = \frac{z}{z + \overline{z}}$.
 - (b) What is the multiplicative inverse of a non-zero complex number z = (x, y)?

- (c) Verify that (3, 1) (3, -1) $(\frac{1}{5}, \frac{1}{10}) = (2, 1)$.
- (d) Determine the accumulation points of the set $Z_n = \frac{i}{n} (n = 1, 2, 3, ...)$.
- (e) Write the Cauchy-Riemann equations for a function f(z) = u + iv.
- (f) When a function f is said to be analytic at a point?
- (g) Determine the singular points of the function $f(z) = \frac{2z+1}{z(z^2+1)}$.
- (h) $exp(2\pm 3\pi i)$ is
 - (i) $-e^2$
 - (ii) e^2
 - (iii) 2e
 - (iv) -2e (Choose the correct answer)

- (i) The value of log (-1) is
 - (i) .C
 - (ii) 2nπi
 - (iii) πi
 - (iv) $-\pi i$ (Choose the correct answer)
- (j) If z = x + iy, then $\sin z$ is
 - (i) $\sin x \cos hy + i \cos x \sinh y$
 - (ii) $\cos x \cos hy i \sin x \sin hy$
 - (iii) $\cos x \sin hy + i \sin x \cos hy$
 - (iv) $\sin x \sin hy i \cos x \cos hy$ (Choose the correct answer)
- (k) If $\cos z = 0$, then
 - (i) $z = n\pi, (n = 0, \pm 1, \pm 2,...)$

(ii)
$$z = \frac{\pi}{2} + n \pi, (n = 0, \pm 1, \pm 2,...)$$

(iii)
$$z = 2n\pi, (n = 0, \pm 1, \pm 2, ...)$$

(iv)
$$z = \frac{\pi}{2} + 2n\pi$$
, $(n = 0, \pm 1, \pm 2, ...)$
(Choose the correct answer)

(1) If z_0 is a point in the z-plane, then $\lim_{z\to\infty} f(z) = \infty$ if

(i)
$$\lim_{z\to 0}\frac{1}{f(z)}=\infty$$

(ii)
$$\lim_{z\to 0} f\left(\frac{1}{z}\right) = 0$$

(iii)
$$\lim_{z\to 0} \frac{1}{f(z)} = 0$$

(iv)
$$\lim_{z\to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0$$

(Choose the correct answer).

- 2. Answer any four questions from the following: 2×4=8
 - (a) Reduce the quantity $\frac{5i}{(1-i)(2-i)(3-i)}$ to a real number.
 - (b) Define a connected set and give one example.

- (c) Find all values of z such that exp(2z-1)=1.
- (d) Show that $\log(i^3) \neq 3\log i$.
- (e) Show that $2\sin(z_1 + z_2)\sin(z_1 z_2) = \cos 2z_2 \cos 2z_1$
- (f) If z_0 and w_0 are points in the z plane and w plane respectively, then prove that $\lim_{z \to z_0} f(z) = \infty$ if and only if

$$\lim_{z\to z_0}\frac{1}{f(z)}=0.$$

- (g) State the Cauchy integral formula. Find $\frac{1}{2\pi i} \int_C \frac{1}{z-z_0} dz \quad \text{if} \quad z_0 \quad \text{is any point}$ interior to simple closed contour C.
- (h) Show that $\int_{0}^{\frac{\pi}{6}} e^{i2t} dt = \frac{\sqrt{3}}{4} + \frac{i}{4}$.

- 3. Answer any three questions from the following: $5\times3=15$
 - (a) (i) If a and b are complex constants, use definition of limit to show that $\lim_{z \to z_0} (az + b) = az_0 + b.$ 2
 - (ii) Show that

 $\lim_{z \to 0} \left(\frac{z}{\overline{z}}\right)^2 \text{ does not exist.}$

- (b) Suppose that $\lim_{z\to z_0} f(z) = w_0$ and $\lim_{z\to z_0} F(z) = W_0.$ Prove that $\lim_{z\to z_0} \left[f(z) F(z) \right] = w_0 W_0$.
- (c) (i) Show that for the function $f(z) = \overline{z}$, f'(z) does not exist anywhere.
 - (ii) Show that $\lim_{z\to\infty} \frac{4z^2}{(z-1)^2} = 4$. 2

- (d) (i) Show that the function $f(z) = \exp \overline{z}$ is not analytic anywhere.
 - (ii) Find all roots of the equation $\log z = i\frac{\pi}{2}.$
- (e) If a function f is analytic at all points interior to and on a simple closed contour C, then prove that $\int_C f(z)dz = 0.$
- (f) Evaluate:

 $2\frac{1}{2} + 2\frac{1}{2} = 5$

(i)
$$\int_{C} \frac{e^{-z}}{z - (\pi i/2)} dz$$

(ii)
$$\int_C \frac{z}{2z+1} dz$$

where C denotes the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$.

- (g) Prove that any polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + ... + a_n z^n (a_n \neq 0)$ of degree $n(n \ge 1)$ has at least one zero.
- (h) Find the Laurent series that represents the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ in the domain $0 < |z| < \infty$.
- 4. Answer **any three** questions from the following: 10×3=30
 - (a) (i) If a function f is continuous throughout a region R that is both closed and bounded, then prove that there exists a non-negative real number μ such that $|f(z)| \le \mu$ for all points z in R, where equality holds for at least one such z.

(ii) Let a function f(z) = u(x, y) + iv(x, y) be analytic throughout a given domain D. If |f(z)| is constant throughout D, then prove that f(z) must be constant there too.

(iii) Show that the function $f(z) = \sin x \cos hy + i \cos x \sin hy$ is entire. 3

(b) (i) Suppose that $f(z_0) = g(z_0) = 0$ and that $f'(z_0)$ $g'(z_0)$ exist, where $g'(z_0) \neq 0$. Use definition of derivative to show that

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

(ii) Show that f'(z) does not exist at any point if $f(z) = 2x + ixy^2$.

(iii) If a function f is analytic at a given point, then prove that its derivatives of all orders are analytic there too.

Let the function f(z) = u(x, y) + iv(x, y) be defined throughout some ε -neighbourhood of a point $z_0 = x_0 + iy_0$. If u_x , u_y , v_x , v_y exist everywhere in the neighbourhood, and these partial derivatives are continuous at (x_0, y_0) and satisfy the Cauchy-Riemann equations at (x_0, y_0) , then prove that $f'(z_0)$ exist and $f'(z_0) = u_x + iv_x$ where the right hand side is to be evaluated at (x_0, y_0) .

Use it to show that for the function $f(z) = e^{-x}$. e^{-y} , f''(z) exists everywhere and f''(z) = f(z). 6+4=10

(d) (i) Prove that the existence of the derivative of a function at a point implies the continuity of the function at that point.
With the help of an example show that the continuity of a function at a point does not imply the

existence of derivative there.

3+5=8

- (ii) Find f'(z) if $f(z) = \frac{z-1}{2z+1} \left(z \neq -\frac{1}{2} \right).$ 2
- (e) (i) Prove that $\int_C \frac{dz}{z} = \pi i$ where C is the right-hand half $z = 2e^{i\theta}$ $\left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right) \text{ of the circle } |z| = 2$ from z = -2i to z = 2i.
 - (ii) If a function f is analytic everywhere inside and on a simple closed contour C, taken in the positive sense, then prove that

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s-z)^2} ds$$
 where s

denotes points on C and z is interior to C.

(f) (i) Evaluate $I = \int_C z^{\alpha-1} dz$

where C is the positively oriented circle $z = Re^{i\theta} \left(-\pi \le \theta \le \pi\right)$ about the origin and a denote any non-zero real number.

If a is a non-zero integer n, then what is the value of $\int_C z^{n-1} dz$?

(ii) Let C denote a contour of length L, and suppose that a function f(z) is piecewise continuous on C. If μ is a non-negative constant such that $|f(z)| \le \mu$ for all point z on C at which f(z) is defined, then prove

that
$$\left| \int_C f(z) dz \right| \leq \mu L$$
.

Use it to show that $\left| \int_C \frac{dz}{z^2 - 1} \right| \le \frac{\pi}{3}$ where C is the arc of the circle |z| = 2 from z = 2 to z = 2i that lies in the 1st quadrant. 3+2=5

- (g) (i) Apply the Cauchy-Goursat theorem to show that $\int_C f(z) = 0$ when the contour C is the unit circle |z|=1, in either direction and $f(z)=ze^{-z}$.
 - (ii) If C is the positively oriented unit circle |z|=1 and f(z)=exp(2z) find $\int_C \frac{f(z)}{z^4} dz$.
 - (iii) Let z_0 be any point interior to a positively oriented simple closed curve C. Show that

$$\int_{C} \frac{dz}{(z-z_0)^{n+1}} = 0, (n = 1, 2, ...),$$
 3

- (h) (i) Suppose that $z_n = x_n + iy_n$, (n = 1, 2, ...) and z = x + iy. Prove that $\lim_{n \to \infty} z_n = z$ if and only if $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$.
 - (ii) Show that

$$z^{2}e^{3z} = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^{n} (|z| < \infty)$$